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I. INTRODUCTION 

Currently, the most conservative theory for the generation of initial fluctuations 
for structure formation in the Universe is the inilation model. The Universe began with 
a large value of the cosmological constant which produced an inflating phase. Classical 
inhomogeneities were damped leaving only vacuum quantum fluctuations to serve as 
the source of inhomogeneities. The cosmological constant, modelled by a scalar field 
potential, then decayed, transforming its energy into radiation. However, observational 
evidence’-s is mounting which suggests that Gaussian primordial fluctuations with a 
scale-invariant spectrum as predicted by the simplest inflation models may, in fact, be 
incorrect. The correlation function of clusters and galaxies, pencil beam surveys and 
other redshift surveys seem to indicate discrepancies in the form of large scale power. 
The view that will be adopted here is that the Mation model is basically correct, 
but that previous models were too naive, and should be improved. Iu particular, it 
is interesting to consider whether nonlinearities in the fields may produce sign&ant 
non-Gaussian fluctuations. 

A disturbing property of inflation models is that scalar field quantum fluctuations 
eventually transform themselves to metric fluctuations requiring ultimately a theory of 
quantum gravity. In the standard approach to calculations in inflation models, one 
splits the fields into a homogeneous classical part, and quantum iuhomogeneities are 
treated iu linear theory.slr These models are self-consistent and difficulties only arise 
when one considers nonlinear&s. Since nonlinear problems are notoriously diflicult to 
solve, I will split ail fields into two parts, Iong and short wavelengths as compared to 
the Hubble radius during the inSation epoch. By extending previous work,8 I will show 
that the nonlinear classical evolution of long wavelength gravitational and scalar fields 
is tractable. The initial conditious for the long wavelength problem are generated by 
short wavelength quantum fluctuations which expand beyond the Hubble radius. Since 
quantum gravity corrections are typically small, one can simply assume that the long 
wavelength uantum fluctuations have become classical in a process called stochastic 
inilation.s-IQ 

When the wavelength of a mode exceeds the Hubble radius, it is an excellent 
approximation to neglect second order spatial gradients in the scalar field equations and 
Einstein’s equations. The evolution equations and the energy constraint are identical to 
homogeneous and flat cosmological models. The only new ingredient is the momentum 
constraint which patches together different spatial points to make one Universe. An 
investigation of nonlinearity at short wavelengths is much more difficult, and will be 
considered in future work. Although nonlinear long wavelength evolution does not alter 
substantially the standard inflation predictions for a single scalar field,‘s nonGaussian 
fluctuations can arise in our observable Universe through multiple interacting fields. 
One of the purposes of this paper is to develop the machinery describing such models. 

In a previous paper by Salopek and Bond, 8 hereafter referred to as SBI, the 
long wavelength equations were solved making two simplifying assumptions. The shift 
function and the traceless part of the gravitational momenta were taken to be zero. 
Hence, the evolution of gravitational radiation was neglected. Iu this case, one could 
solve the momentum constraint. The Hubble parameter which describes the rate of 
expansion of the Universe is only a function of the scalar fields, 

(1.1) 
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For example, the Hubble parameter does not depend explicitly on the time parameter, 
t. The momenta of the scalar fields are then given .by partial differentiation of the 
Hubble function, 

_’ 4,ct 2) m= BH Ir =-P- 
N(t, 2) 4x S$j (1.2) 

where N(t,r) is the lapse function. The energy constraint, then becomes the separated 
Hamilton-Jacobi equation. For a single scalar field, it is useful to choose #J as time 
because one could then generalize the variable { that was first introduced in linear 
theory by Bardeen, Steinhardt and Turner. I’ For multiple fields, the determinant of 
the 3-metric is the most useful. It is clear then that If one wishes to discuss the 
role of time in general relativity or even quantum cosmology, one should introduce 
inhomogeneities, because time is the observation surface that one views a 4-geometry. 
For example, homogeneous mini-superspace models are insuflident to address the choice 
of time hypersurface. 

The full classical long wavelength problem will be solved using Hamilton-Jacobi 
theory. The 3-metric rij(t,z) E 71/3(t,z)hij(t,~) will be expressed in terms of the 
conformal J-metric hdj with unit determinant. Then terminology, gravitational radiation, 
will then refer to the conformal 3-metric without assuming any linear perturbation 
analysis. 

In Sec. II, the equations for the long wavelength gravit.+onal and scalar fields are 
enunciated. One neglects all second order spatialgradients in the action, or equivalently, 
in the equations of motion and the energy constraint. The resulting equations may be 
solved if one invokes a canonical transformation to new variables where the Hamiltonian 
density is identically zero. Since the Hamiltonian generates time evolution through 
Poisson brackets, the new coordinates are constants in time. The Hamilton-Jacobi 
equation is separable. Consequently, the determinant of the J-metric is the natural time 
parameter. The only equation which remains is the momentum constraint, which may 
be conveniently written in terms of the new variables. The canonical transformation 
has disentangled the energy and momentum constraints. 

In Sec. III, I consider solutions where the dynamic effects of gravitational radia- 
tion are not important. This situation was also investigated in SBl, but their approach 
cannot be applied directly to gravitational radiation. The more powerful method of 
canonical transformations is required. Exact complete solutions are obtained for m 
massless scalar fields evolving under a cosmological constant. This example is solved 
in detail because it will guide the solution for gravitational radiation. Exact com- 
plete solutions are obtained for multiple scalar fields interacting though an exponential 
potential. The momentum constraint may be integrated exactly, and the results are 
compared with earlier work. 

Sec. IV actually treats the evolution of gravitational radiation. The B-dimensional 
separated Hamilton-Jacobi equation which governs the canonical transformation may 
be solved explicitly if only a cosmological constant is present. This simple case illus- 
trates the solution to the more general situation where scalar fields are also present. 
The 6 gravitational degrees of freedom may essentially be reduced to a single massless 
scalar field. Complete canonical transformations are given for the case of gravitational 
radiation interacting with a scalar field which has an exponential potential: Sec. V 
contains a summary of results 8s well as conclusions. 
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II. HAMILTON-JACOBI THEORY FOR LONG WAVELENGTH 
INHOMOGENEOUS UNIVERSES 

_’ The action principle for the gravitational field and n scalar fields is,‘s 

I= 
I 

‘%‘=ii{ 2 R - &+‘“QMv~r, - V(h) }, 

= ~zN~~~[(3)~+~ij~ij-~‘] 
I 

+ f [h - N’#J~,~)*IN~ - hqi+k’i] - v(‘$k)}. (2.1) 

The basic variables are the scalar fields, &, the lapse and shift functions, N and N’, 
and the J-metric, 7ij. The extrinsic curvature 3-tensor Kij is a generalization of the 
Hubble parameter that appears in isotropic cosmologies: 

go0 = -N’ t7’jNiNj, gs< = pi0 = N;, pij = 7ij, (2.2a) 

Kij = (Nili + Njli - $3/(2i). (2.26) 

It proves more useful to consider a Hamiltonian formulation. One defines the momenta 
densities, &, [xv]” for scalar &d gravitational fields, respectively, 

rob = .&(h - Ni#,i) , [,-r]ij = zfi(-,ijK _ KG) , 

and the corresponding,action is 

1 = I 
d’+(~“~~ + [T’]ii+ij _ Npf _ Nixi) (2.4) 

where the energy density, ‘If, and the momentum density, ‘Hi are given by, 

l/z,+r’ f +‘V(+,X2.5a) 

II = xi = -2(7’iL(X’]‘“) ,k t [X7]lk71k,i + ?rd’6k,i ; (2.56) 

here xv E [x71ij7:j is the trace of [vv]ij. The long wavelength equation are obtained 
by dropping all second order spatial gradients. In (2.5a), the terms in braces which 
include the 3-curvature, sR, and the scalar field spatial derivatives, 7’jbk,i4k,j/2, are 
neglected. 

The resulting system is mathematically self consistent because the Poisson brack- 
ets of the various constraints return the constraints: 

W(2),W4) = 0, (2.6a) 
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{‘H(Z),‘Hi(Z’)} = -.H(2t)$63(Z - Z’), 

(2.6c) 

If one neglects the scalar fields, this system is equivalent to the large gravitational 
coupling G = m$ -a co limit considered by many researchers.‘s-‘8 (However, in 
inllation models, scalar fields are essential to model primordial inhomogeneities for 
structure formation.) Several authors works have attempted to formulate a quantum 
limit, where unfortunately the momentum constraint was usually ignored (Pilati,” 
Teitelboim,‘7 SBl). In SBl, the classical system was solved, including the momentum 
constraint, if the evolution of gravitational radiation was neglected. This special case is 
the most relevant for stochastic intlation and will be considered from a different point 
of view in Sec. III. In this paper, the classical system, including gravitational radiation 
will be solved completely in several situations. 

Unlike the case for pure general relativity, the first Poisson bracket vanishes be- 
cause the Hamiltonian density is a function of ultra local values of the fields; i.e. it does 
not depend on spatial gradients. If the shift function vanishes, then Eq.(Z&) implies 
that the energy constraint is preserved in evolution, 

BH(z’) 
- = VW), / 

at 

d%N(r)?f(z)} = 0. ., 

Since this true independent of the the momentum constraint, it is therefore possible to 
solve the energy constraint and the evolution equations in isolation. Analogously, the 
second Poisson bracket states that the momentum constraint is preserved in evolution 
only if the Hamiltonian vanishes. 

By taking variations of the action (2.4) with respect to the canonical variables, 
one finds the evolution equations to be: (1) the definitions of the scalar and gravitational 
field momenta, 

(& - N’&)/N = 7-1/‘~+b, (2.7a) 

(+ij - Nilj - Njli)/N = $7-l” (z[*‘]ij - 7ij7T7) 9 (2.7b) 

and (2) the evolution equations for the momenta: 

?iob - (N%T+~),~ > /N = -7’/‘!.& 

7l”bj {~([+]‘-[7+, - ++) + $d}- (2.Jd) 

The constraints (2.5a,b) follow from the variation of the lapse and shift functions. 
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In SBl, it was assumed that the traceless part of the gravitational momentum 
density vanished so that [xTlij = xTyij/3. In this case, the momentum constraint (2.5b) 
reduces dramatically, 

P-8) 

In fact, it can be solved exactly, implying that 7 -l/%7 is not an independent variable, 
but rather is an arbitrary function of & and possibly time, whereas ~-‘lz*$r is given 
by partial derivatives of that arbitrary function: 

7 -l/l~-f 3 2ga(0k, q, 7-‘/‘,Q, = -2 e=a(bP;l t). (2.9a) 

Physically, Ll(&, t) is the Hubble parameter 

H a $ ln(fi) - N$ / (3N) 

which measures the rate of change of the log of the scale factor, In(a) E ln(r)/6. 
One can show using that the evolution equation for x” that there is,no explicit time 
dependence in the Hubble parameter, H 3 H(&). (Of course, since ‘$k depends on 
time, H depends implicitly on time.) Substituting these expressions for the momenta 
into energy constraint (2.5~~) leads to a separated Hamilton-Jacobi equation, 

WE vo u 1 t ion in Gravitational Radiation), (2.9b) 

Hence, in SBl, one first integrated the momentum constraint, and then solved the 
energy constraint as well as the evolution equations. Unfortunately, by assuming the 
traceless part of the gravitational momentum tensor vanishes, there is no evolution 
in the gravitational radiation. When one relaxes this assumption, one finds that the 
momentum constraint may not be solved using the simple method that led to (2.9a). 
However, the basic ingredient, a Hamilton-Jacobi-like equation has mysteriously ap- 
peared, although we have not explicitly employed a canonical transformation. In fact, I 
will use canonical transformations to incorporate the effects of gravitational radiation. 

Before one proceeds further, a simple analogy proves instructive. If one considers 
the set of all points in Euclidean J-space a unit distance from the origin, I’ +yz fz’ = 1, 
then there are only 2 degrees of freedom and it is convenient to introduce spherical 
coordinates, 9 and 4, with z = si&cos+, y = sin&in+, z = co.&, so that the constraint 
is satisfied. In the same way, the energy constraint (2.5a) is telling us that one should 
choose new canonical variables so that the Hamiltonian vanishes strongly. Since the 
Hamiltonian generates time evolution through the Poisson bracket relations, the new 
canonical variables are constant in time, although they may be spatially dependent. 
The only equation that remains to be solved is the momentum constraint which can be 
conveniently expressed as a function of the new variables (Sec. IV). 

As the initial step, I review the theory of canonical transformations for gravity,” 
which is quite similar to the classical treatment. ” One defines new fields, denoted by a 

tilde, ‘$k(b z),~“h(ty~)y?ij(t, I), [r q ij t z I ( 1 )Y so that Hamilton’s equations are preserved. 
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This implies that the new action has the same form as the original except that it may 
have a total time derivative added to it: 

where S is a three-functional which depends on #k, &, T;j and Tij. It will be assumed 
that S does not depend explicitly on time. In this sense, the theory of canonical 
transformations for gravitational fields differs from standard theory. 

Applying the chain role, 

s= d%[ 
/ 

&$k(t, 2) t -6S$k(t, 2) t &Tij(t, 2) t 
&k(z) 

and comparing (2.10) with (2.11), one derives the canonical transformation linkiig the 
various variables, 

X(r) = 72(z), ‘Hi(Z) = 7&(z), (2.12a) 

#b(2) = bs 
6&c(=)’ [r+lij = -&. 

(2.12b) 
The new variables will be chosen so that the new Hamiltonian density vanishes func- 
tionally, fi(~k(z),~ ar (z),Tij(z), [xq]‘j(z)) z 0, (in the language of Dirac,‘O it vanishes 
strongly), leading to the Hamilton-Jacobi equation, 

- 16~7-‘12&& [~jk(z)~il(z) - ~fij(rhkl(r)] 
mP 

t ‘+“(Z)v(‘$k(z)) = 0. (2.13) 

It will be assumed that the momentum constraint vanishes weakly but not strongly;l 
i.e. it constrains the new canonical variables, but its Poisson bracket with other 
fields will not in general vanish. A redundancy theorem advanced by Moncrief and 
Teitelboim” claimed that if S satisfied the energy constraint, it automatically satis- 
fied the momentum constraint. This theorem cannot be applied for long wavelength 
fields because the Poisson bracket (2.6a) vanished, whereas in pore Einstein gravity it 
returned the momentum constraint.” 

Since ‘l? = 0, the new fields are in fact constants in time if the shift func- 
tion vanishes. For example, the time evolution of &(z) is generated by the Pois- 

son bracket relation with the new Hamiltonian, i,(z) = {&(z), ti,,,,,}, where I?,,,, = 
/@z(Nfi(z) + N%;(z)) vanishes. (See Sec. IILA for the case where the shift does 
not vanish). 

Of course, the greatsimplification that arises for long wavelengthuniverses is that 
there is no causal contact between different spatial points. Each spatial point evolves 
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as an independent homogeneous universe. Mathematically, it is possible to write the 
generating functional S as a sum over all independent points. One attempts the ansatz, 

where hij E 7-‘f37ij and Rij E j-‘13jij are conformal %metrics, each having unit 
determinant. The function, 61, which will be referred to as the Hobble function, has 
no explicit spatial dependence except through the fields themselves and the additional 
parameters, &, Lij: 

Applying the result that 

H ~ a(A, hij; ok, T&j). 

BH - = 7-l/3[f$ _ C!!&klhij] 
hij 

one finds that the Hubble function satisfies, 

BE 6’H 
Hz = i [hjkhli-- - 

Oh<j 8hkl 
i(kje)‘] f 2 (E)’ t sv(@k), (2.14b) 

which will be referred to as the separated Hamilton-Jacobi equation (SHJE). The deriva- 
tives appearing in (2.14b) are determined by assuming that all the hij are independent; 
only after differentiation does one set det(hij) = 1. The momenta are given by func- 
tional derivatives of Hamilton’s principal functional S: 

[sf]ij ,!!!iTfi~-lP(~ - fgi,,h’j), 

v 

& = - L$.&.$ 

(2.14~) 

(2.14d) 

(2.14e) 

(2.14f 1 

It is useful to note that the trace of the gravitational momentum tensor is proportional 
to the Hobble parameter, 

(2.15) 

The SHJE contains no reference to spatial variables nor to the time coordinate; 
it is actually solved in field space where $k and hij are the intrinsic variables. By 
assuming that the Hubble function depends on yij only through the combination, hij 3 

-1 -‘13r;j, one has effectively decomposed the gravitational momentum tensor into a 
trace contribution (the first term on the right hand side of (2.14~)) and a traceless 
part which describes evolving gravitational radiation. Similarly, by assuming that the 
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H depends on hj only through &j, one finds that the new gravitational momentum 
tensor is traceless, [7r+]ijLj = 0. 

The determinant of the 3-metric does not enter in (2.14b); this gravitational 
degree of freedom has been separated from the others using the ansatz (2.14a). For this 
reason, 7 is the natural time variable for classical long wavelength fields. For example, 
one may invert the canonical transformation (2.14c-f) to obtain $j and hij as a function 
of 7 and the new canonical variables, which are constants if the shift vanishes; hence 7 
is the obvious time choice. However, when one includes quantum diffusion from short 
wavelength fluctuations, then T = In(Ry’ls) is more useful.‘s 

In summary, eqs. (2.14) and the momentumconstraint (2.5b) are the fundamental 
equations of this paper. The evolution equations (2.7) will be of secondary importance. 
The goal then is find solutions of (2.14b) which depend on arbitrary parameters, &, 
and Tij, which are the new canonical variables. The momentum constraint will then be 
solved in the last step, as illustrated explicitly in Sec. Ill and Sec. IV. 

III. LONG WAVELENGTH SCALAR FIELD SOLUTIONS 
NEGLECTING EVOLUTION OF GRAVITATIONAL RADIATION 

If one neglects the evolution of gravitational radiation, then one can solves the 
long wavelength problem of scalar fields interacting through a potential by fmding solo- 
tions, H = H(&) of the separated Hamilton-Jacobi equation (2.9b). The momentum 
constraint is automatically satisfied. Unfortunately, this technique does not apply to 
the case where the Hubble f%mction depends on the conformal 3-metric hij. This is the 
situation where the evolution of gravitational radiation is important. In this section, I 
will examine the problem of solving n scalar fields without gravitational radiation from 
a diff’erent vantage point: one looks for n-parameter solutions of the SHJE equation. 
These solutions will be called complete because they generate a canonical transforma- 
tion which describes the general evolution of n scalar fields. This method is sufficiently 
powerful to encompass gravitational radiation as will be shown in Sec. IV. 

In Sec. A, the general theory of scalar fields interacting with an arbitrary potential 
is developed. In Sec. B, examples of complete solutions of the SHJE are given for m 
massless scalar fields. In general, it is shown how the m massless fields may be reduced 
to a single massless degree of freedom. In Sec. C, it is Shown, how all the solutions 
of the SHJE for a given potential may be obtained from a complete solution. In Sec. 
D and Sec. E, a complete solution is given for two scalar fields, one massless and the 
other interacting through an exponential poteritial. 

A. General Theory of Scalar Fields with an Arbitrary Potential 

If’ the Hobble function does not depend on the conformal 3.metric, hij, then the 
SHJE for n scalar fields and gravity simplifies to eq.(2.9b), which was applied extensively 
in SBl. The gravitational momentum tensor is then proportional to the 3-metric, 
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It will now be assumed that the Hubble function depends on n independent parameters, 
&..k= l,..., n, 

H = g(‘$k, Jk). (3.1) 

Such solutions are typically not unique. According to (2.14), the new parameters will 
be interpreted as new canonical variables, whose conjugate momenta, & are given 
by (2.14f). After substitution of eq.(2.14e), one finds that the momentum constraint 
(2.5b) reduces to, 

4 l/l 
xi(*) = 4*7 (H,i - g&k,i)* 

In contrast to SBl, I will not assume that any of the new variables are homogeneous. 
Expanding the spatial gradient of the Hubble parameter, 

*d = g4k.i t zJk,i, 

one finds that the momentum constraint may be written simply in terms of the new 
variables, 

0 = fii(.) = &%kJ. (3.3) 

The new Hamiltonian then contains only a contribution from the momentum constraint, 

Barn = 
/ 

d3ZNiTdrJk,ie 

The time derivative of the new variables are then given by Poisson brackets with the 
new Hamiltonian: 

bk - Nidk,i = 0, +b. _ pa& = 0. 
( > 

(3.5) 
.i 

Thus in general, the new canonical variables are not constants in time. However, eq.(3.5) 
states that they are indeed constants along trajectories normal to the time hypersurface. 
For example, if the spatial coordinates are chosen so that the shift function vanishes, 
then it is true that &(z) and 7ra( ) z are constants for a fixed spatial coordinate. Thus, 
it is not necessary to assume that the shift vanishes, although it simplifies the analysis. 
From now on in this section, N’ will be set to zero. 

The momentum constraint (3.3) may be integrated by dividing out by one of the 
new momentum variables, say * 6, .. , gxvmg 

&,i = - g s’$k,i 

whose solution implies that 4, is an arbitrary function of the remaining fields, &, k = 
2, . . ..?a. 

41 = f(&,&, . . . . &), with & E &(I), k = 2, . . . . n. (3.7a) 

As a result, one must identify, 

,&IT& - af 

a#k 
k = 2, . . ..n. where ~~1 G x”‘(z). 
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~41 and &, k=Z,...p are spatially dependent. 

For a single scalar field, the integral of the mofnentum constraint simplifies. 4 
can be taken to be spatially homogeneous whereas ?r# = =6(z) can have an arbitrary 
spatial dependence. In this case, uniform Hubble surfaces are the same as uniform 4 
(comoving) surfaces. The constant parameter C fist introduced by Bardeen, Steinhardt 
and Turner” in linear perturbation theory to describe metric fluctuations in intlation 
models is defined to be the variation of lnfi on a uniform H slice,’ 

f(z) E In[ &(H, =)/(&(a, zo)] = ln[?r”(z)/rb(zo)], (Single Scalar Field) (3.8) 

(However, note that this quantity is three times their original definition: C = 3[~9.) 
Here, Q, is some fixed fiducial point. Eq.(3.8) follows from the definition of the new 
canonical momentum (2.14f). It is important to note that C is constant in time even 
if the Universe is not inflating because the present formalism is valid whenever the 
wavelength of the fluctuations is larger than the Hubble radius. (An example of a non- 
inllatiug universe is given in Sec.D.2). For multiple fields, C as defined above is not 
constant for all times. However, if one field dominates at late times, then asymptoti- 
cally C approaches a constant. For multiple fields, one should in general characterize 
the system using the constants &(z), r”(z) which are constrained by (3.7). They 
characterize both adiabatic and isothermal fluctuations. 

In summary, eqs.(3.7a,b) represent a general solution of the momentum con- 
straint: the spatial dependence of r- 41 and &, k = 2,n is arbitrary whereas the remain- 
der of the scalar field variables, & and &, k = 2, . . . . n, are constrained in terms of the 
arbitrary function, f. Using the~canouical transformation (2.14e,f), one can determine 
the evolution of &(t, z) and &(t, z) as a function of 7 and the constants $k(z) and 
h(z) (assuming the shift vanishes). 7 then becomes the natural time parameter. 

B. Complete Solutions of the SHJE for Messless Fields with a 
Cosmological Constant 

The separated Hamilton-Jacobi equation of n massless scalar fields evolving un- 
der the tiuence of a cosmological constant (neglecting gravitational radiation) is easily 
solved and provides one with a simple class of canonical transformations. This example 
also ilhuniuates the more general situation where gravitational radiation also evolves. 

1. Solving the SHJE for Massless Fields 

Neglecting gravitational radiation, c7H/&‘hij = 0, the SHJE describing m massless 
scalar fields evolving through a constant potential, V(&) = V, is 

fp = 2 g("")2 t 2. 
k, @k P 

For a single scalar field, the equation may be rearranged, 



and it is easily integrated: 

a(&,& = Hocpsh[&(# - ~$)/m?] where Ho’ = Br&/(Sm?p). (3.11a) 

The solution is a function of an arbitrary parameter 6. The relationship between (An”) 
and the new canonical variables (4,~“) are given through eqs.(2.14e,f), leading to 

-1 [@“r6i(rr,m,)], T = d (3.11b) 

For a iixed spatial coordinate, the new variables are constants, and eq. (3.11b) describes 
how the scalar field evolves in time which can be taken to be 7l/‘. 4 is the final value 
of the scalar field as 7 + 00. 

According to Sec. A, the momentum constraint can be satisfied if 3 is homo- 
geneous while x4 has au arbitrary spatial dependence. It is certainly unusual that at 
late times, 4 assumes a uniform value. This is a peculiar feature of assuming only a 
single massless scalar field. In this case, the momentum constraint is actually a singular 
equation. Another possible solution of (3.3) is & = 0 and V$ E J(z) having an arbitrary 
spatial dependence but no time evolution. This solution cannot be obtained smoothly 
from the other class of solutions if one employs a single scalar field. When one includes 
other fields, then the spatial dependence of & at late times is certainly allowed (eq. 
(3.7)). 

For m scalar fields, one may easily guess a solution which depends on m arbitrary 
parameters, &. One simply takes the solution of the one dimensional problem and 

replaces 4 - 6 by [C;“=l($k - &)‘]‘/’ which will be denoted by 16 - $1: 

H(&,&) = Hc,ceosh[Jl;iJ- &/mp]. (3.12~1) 

The validity of the solution may be justified by explicit substitution in the SHJE. 
The solution is a direct consequence of the rotationally symmetric form of the SHJE 
equation. The old variables are related to the new ones through, 

dir -_ sk=bk-J& cl& -’ [~~~-‘l’lllil,(rn,H~)], with rQ& = x&h. (3.12b) 

This equation describes the evolution of +k(t, z) and &(t, z) in time at a fixed spatial 

coordinate. Surfaces of constant H are concentric circles about the point G as shown in 
Fig. 1. The physical trajectories-are straight lines which are orthogonal to the circles. 

In order to verify (3.12b), one begins with the canonical transformation (2.14e,f). 
Because of the symmetry between $r, and &, the canonical transformation eq.(Z.l4e,f) 
implies that r&h = ?r+*, and that 

,& = ~71/1~ = _ 
477 ah /- 

&W 7 I” sinh[vG&- Gl/rn~] ($k - qk)/I& ;I. 

(3.13) 
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one squares both sides and then sums over the index k, giving 

haI = &L-w 7 “%inh[+/iG1~- zl/m~], (3.14) 

where I%1 denotes (Ck&‘)‘I1. Dividing eq.(3.13) by (3.12), one finds that & and 
& share the same direction, 

7rbr (4k - qk). 

-=- I&k I4 

Solving for &, and then applying (3.14) leads to the stated relationship between the 
new and old variables, (3.12b). 

In this instance, it was trivial to guess the solution (3.12a) of the SHJE for 
multiple fields given the one dimensional solution (3.11a). However, it will prove useful 
to develop more systematic methods which will guide our analysis through non-trivial 
problems. 

2. Integration of SHJE through Evolution Equations 

Consider a solution of the SHJE equation which describes trajectories emanat- 
ing from a single point in field space, 4~ = &. Given some initial direction for the 
momentum of the scalar field II+*, one may integrate the equations of motion, 

r7 E -3mb7,bH = - 
cl* 

(~)“‘[~&’ + vo7y (3.15a) 

&= 
N 

7-‘/1*h (3.156) 

ii= mp 
2z7W”7 (3.15c) 

#A 
- = 0. 
N 

(3.15d) 

to find H as some function of time. Note that r-r is actually negative for an expanding 
Universe. The SHJE will then be integrated through the method of characteristics. 

Each point 6 ln the vicinity of z will have a trajectory passing tb.rough~ it, and one 
associates with it the value of the Hubble parameter that a trajectory has when it 
passes through that point, HE H(J). T o e ermine the trajectory, one notes that the d t 
solution of eq.(3.15d) is trivial implying that 

++I = ,& (3.16) 

where ,*a are constant parameters. In order to integrate the remaining equations, one 
must decide on a choice of time parameter, and the natural choice is 7 itself because 
the Hubble parameter is a function of it, eq. (3.15~~). In this case, eq.(3.15c) which 
defines the momentum of-y becomes the definition of the lapse function, 

4 N = -z7-‘+r~. (3.17) 
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Equation (3.15b), 

&bk = -(z)“’ 
rdrd(7-‘/a) 

[)(“b+-l + vp 

may then be integrated giving +r. as a function of 7, eq.(3.12b). I now wish to determine 
the Hubble parameter at point & given that the trajectory startedat &. This amounts 
to fmding an expression for 7 along a fixed trajectory. Subtracting & from both sides of 
(3.12b), squaring and sumrm ‘ng both sides, one rederives (3.14) which when substituted 
into (3.15a) leads immediately to H z H(&), eq.(3.12=). 

3. Reduction of the Number of Degrees of Freedom 

From the solutions of Sec. 1 and 2, one sees that m scalar fields essentially act as 
a single scalar field. This holds more generally even lf there are additional scalar fields, 
&, k = m + 1,m + n which interact through some potential, V E V(&,,+l, . ...&+“). 
One, may reduce the m massless degrees of freedom to single one by considering solutions 
for the Hubble function of the form 

H = au, hn+1, . . . . hm+n), where u = [g(#Q - &)‘]“‘. (3.18~) 
k=l 

The reduced SHJE then depends on one massless field, IL, and the n additional fields, 

H1 = g[(rE)z + k;gE,‘l + $%+++m+n). (3.18b) 

One need only lind a solution of (3.lEb) depending on n independent parameters to 
define a complete solution of the original SHJE because (3.18a) already depends on m 
parameters, & , . . . . &,, through U. Such a reduction of the number of variables may be 
effected whenever there is a symmetry in the system. In this case, the massless scalar 
fields are rotationally symmetric (as well as translationally symmetric, although this 
would suggest a different class of solutions; see, for example, Sec. E). 

Massless degrees of freedom may become important in an epoch after inllation 
if they develop a potential at some lower energy scale. These fluctuations are called 
isothermal fluctuations. However, at late times during the inflation epoch, when all 
decaying modes are no longer important, the evolution is trivial. All the massless fields 
have an arbitrary spatial dependence which is constant in time. The field that drives 
inflation has a non-trivial potential. After the decaying modes have died, it evolves 
independently of the massless degrees of freedom and may be treated as a single scalar 
field. 

C. General Solutions and Green’s Function Solutions 
of the Separated Hamilton-Jacobi Equation 

An n-parameter solution of the SHJE for n scalar fields is complete in the sense 
that it characterizes all possible solutions to the equations of motion. For example, 
it will be shown how almost all solutions of the nonlinear SHJE may be derived from 
such a solution. This section is more abstract than the others and should perhaps be 
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skipped over on first reading. It is nonetheless important because it links the analysis 
of this paper with that of SBl. 

Given a solution, eq (3.1) of the SHJE equation which depends on n constant 
parameters, &, I = 1, . . . . n, one may obtain another solution by allowing the 41 to 
depend on & in a very special way. The & will be chosen to minimize (or maximize) 
the Hubble function, H(&,&), holding & fixed, provided that & is constrained to 
lie on some fixed surface, g(&) = 0. H once for small arbitrary variations d& of the 
parameters, one requires that 

dH = ($$d& = 0. 

The resulting Hubble function H(&, &(&)) is al so a solution of the SHJE because its 
partial derivative with respect to &, 

&H(~J&)) = (&t ($),$ = (& (3.20) 

reduces to the standard partial derivative holding 41 fixed by virtue of (3.19). 

The extrema procedure is a powerful method of generating solutions of the SHJE. 
It will be illustrated using the complete solution for m massless scalar fields, eq.(3.12=). 
I wish to find a solution of the SHJE (3.9a) which has the value H, at the point d 
and which has trajectories emanating from 11, in all possible directions. In analogy to 
the terminology of linear differential equations, such a solution will be referred to as 

the Green’s function, and will be denoted by a(#, II,). The parameters z appearing 
in the complete solution (3.12.a) will therefore be constrained such that the Hubble 

parameter has the value H+ at point $. Thus, G must lie along a sphere centered about 
&with radius, 

r = I$- ;I = zcosh-l(H+/HO). (3.21) 

The Hubble parameter H(c#, H+) at point Jis just the minimum (or maximum) value 

of (3.12a) given that G is restricted by (3.21). Since in this particular case, H(& G) is 

a function only of the distance between 4 and z, it is clear geometrically that G must 
be collinear with 6 and 4, and the point giving the minimum (maximum) value of the 
Hubble parameter is (see Fig. 2) 

(3.22) 

The value of the Hubble parameter is then 

H(&j, H+) = H(& s(J)) = Hocosh[ cash-‘(H+/Ho)]. (3.23) 

which may be shown explicitly to be a solution of the SHJE satisfying H(J = $1~6, H+,) =I 

H*. 
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The Green’s function solution allows one to solve the initial value problem for 
the corresponding SHJE. Given that the Hubble parameter is constant, H = H’, on 
some n - 1 dimensional surface, g(4) = 0, what is the solution of the SHJE equation 
in the vicinity of this surface? At the point & the required Hubble parameter is the 
minimum (or maximom) value of of the Green’s fmiction H(+j+, H+ = H’) where one 
considers ,all variations of the parameters 11, which lie on the surface g($) = 0. The 
resulting solution of the SHJE satisfies the initial data, but it need not be unique, as 

the extrema problem may have several solutions. 

The extrema method of obtaining solutions to the SHJE is not an obvious result, 
and one may wonder how it was motivated. In fact, the momentum constraint (ne- 
glecting gravitational radiation) suggested such a property. Using (3.3), one may write 
the momentum constraint as (g)d& = 0, which is just (3.19). The interpretation is 

clear: assuming that & is fixed, H is minimized respect to variations of & which are 
consistent with some constraint on &, say (3.7a). 

In SBl, it was shown that ifone neglected gravitationalradiation, then the Hubble 
parameter was only a function of the scalar fields, H E H(J). There was no explicit time 
or spatial dependence. However, the solution (3.1) of the SHJE depends on parameters 
& I &(z) which are allowed to have spatial dependence through the integration of the 
momentum constraint (3.7b). How does one reconcile the two approaches? First one 
must realize that the function of two arguments H(qS, 4) that appears in (2.14a) and 
(3.1) actually generates a canonical transformation which solves the long wavelength 
problem. Jn Sec. II of SBl, the Hubble parameter actually referred to H(t,z) = 
-&?/(34)y- l&r7 expressed as a function time and space. In general, these two 
functions are different (for example, they require different input arguments), but only 
afler one solves for the evolution equations as well as the constraints are the two the 
same. For example, one may use the canonical transformation (2.14f) to write the 
integral of the momentum constraint (Xi’a,b) as 

with $1 = f(&, $3, . . . . &). 

Consequently, one may solve for G = z(J) in terms of 6, and then substitute the result 
into (3.1) to find a solution of the Hubble parameter which depends only on the scalar 
fields, 

H s H(J) = H(&;(g?)). (3.246) 

In fact the resulting Hubble function is just that given by minimizing (3.1) where $ is 
allowed to vary on the surface given by (3.7a), 0 = g(J) = -4, + f(&, $3, . . . . &). To 
see this, it is useful to introduce a Lagrange multiplier, X and then minimize 

H(& ;I - kd 
Variations in 4 holding 6 fixed imply that 

i?H 
- zz -,I 

861 

WI ’ ig 
=xaf 

Wk ’ 
k = 2,..,n. 
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Combining these two equations by eliminating the Lagrange multiplier leads directly 
to eq.(3.24a). Thus after one solves the evolution equations, the Hubble function (3.1) 
and that used in Sec. II of SBl, eq.(3.24b), are identical. 

This section has shown how to derive solutions of the SHJE. Froma complete solu- 

tion, one constructs the Green’s function, H(&& H+) d es&big the solution with tra- 
jectories of all possible directions emanating from the point &with H(J = d/J, H$) = 
H,J,. The Green’s function then allows one to solve the initial value problem, where the 
Hubble parameter is constant on some initial n - 1 dimensional surface. In this way, 
dne can obtain all solutions of the SHJE from an n-parameter solution. In addition, 
one may use the extrema method to show that the technique of solution applied in SBl 
is actually consistent with this paper. 

D. Scalar Field Interacting via Exponential Potentials 

The evolution of a single scalar field will be considered when the Universe under- 
goes a phase transition from an irdlation epoch to a typical Friedman-Robertson-Walker 
era where the scale factor varies as a(t) = -$I6 IX tP, p < 1. The transition will be 
modelled by patching together two exponential potentials. 

In Sec. D.l, the evolution of a scalar field under an exponential potential will be 
quickly reviewed. In Sec. D.2, one will apply this result to model a phase transition. 

1. Review of e Scalar Field with an Exponential Potential 

The SHJE of a single scalar field interacting with an exponential potential, 

V(4) = %xp(- T&h /- 
(3.25) 

can be solved exactly.s Here the constant p describes the flatness of the potential. In 
the limit that p + 00, the slow-roll approximation, HsR(~) = (87V(4)/(3m$))‘l’ is 
an exact solution. A one parameter solution which is valid for all positive p wa4 given 
in SBl: - 

H(+,&p) = (s)*“exp(-/T -$cosh(u). (3.26~) 

where u is a function of 4, 4 and p defined through, 

#=J-Lz 6 1 _ l)(3p) k + & In Ic*sh(u) - &i44ll. (3.266) 

Once again, the canonical transformation is given by differentiation with respect to @ 
ami & 

To = &V$y*l’exp(- d = ?r+ - +pyllaH. 

As u approaches tanh-‘(l/J-), the Hubble function approaches the attractor solution, 

H&&P) = ( 
S?rV, 

1 
‘11 

344 - U(3P) 
=xd- 
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This solution which is valid for p > l/3 describes the power-law evolution of the Uni- 
verse, a(t) IX P, where the time parameter corresponds to a choice of unit lapse function 
in the metric (2.2a) (synchronous gauge). 

The parameter u has physical aignilicance as it measures the deviation of ~4 from 
the attractor solution momentum density: 

u = sinh-’ [(2vo)- I/~r-w,,p( 
J- 

=-)r*]. (3.27~~) 

For u < tanh-l(l/JjSj), the momentum of the field is below that of the attractor, while 
the opposite is true for u > tanh-‘(l/JS-). Using (3.26a), one obtains the following 
expression for the new canonical variables (4, r”), 

ln(cosh(u) - ,&inh(u)l] (3.276) 

r =&[l- b 
&nh(u)l. 

(3.27~) 

The solution (3.26) of the SHJE is the prototype for numerous others. 

2. Phase Transition in the Universe 

A phase transition in the Universe may be modelled by considering a single scalar 
field interacting through the potential, 

(3.28) 

composed by joining two exponenti&. with p- > 1 for 4 < 0 and p+ < 1 for 4 < 0. For 
negative values of 4, the Universe inflates, a(t) ac tp-, whereas for positive values it 
evolves with a different power-law index, a(t) 0: tP+ which imitates a matter dominated 
(p+ = 2/3) or a radiation dominated Cp+ = l/2) Universe. A solution of the SHJE 
which depends on single parameter & is just 

&4(4,4-) = H(4,LP-1, for 4 IO, 

= H(AJ+(&),P+), for 6 > 09 (3.29) 

where the function H was given in eq.(3.26). $+($-) is a function of & which is 
parametrically given in terms of ‘10, 

0=,$-T? 6 1 _ lf(3p-) 1~0 + -q& hlcosh(uo) - &si~(uo)l]; (3.30a) 

- In Icosh(m) - &sinh(uo)l]. (3.30b) 



Thus given J-, one solves for %(q-,) and then substitutes in (3.30b) to find $+ E 

d+(L). 

This solution is found by joining continuously across 4 = 0 the solutions, a(#, &, p- 
and a(#, $+,p+), for two exponential potentials. Since these solutions are parametrized 
by u in (3.26), it proves convenient to assume that the same parameter describes both 
solutions, and that it is continuous at the junction 4 = 0 where u = m. Continuity of 
the Hubble parameter at 4 = 0 then leads to relation between & and $+, eq.(3.30). 

In Fig. 3, the Hubble parameter H+(b, $-) is plotted for the phase transition 
between p = 2 and p = l/2. For 4 < 0, the scalar field evolution was given by the 
attractor solution, & = --oo. After 4 = 0, the Hubble parameter quickly decays to the 
new attractor solution. The derivative of the Hubble parameter, (BH/i@), is continuous 
at 4 = 0. 

It should be emphasized that r”-(z) = m&/(47r)(ali,,/a$-) is constant in time; 
there are no jumps at # = 0. This is a general feature for Hamilton-Jacobi theory. In 
particular, for a single scalar field, one should note that if the fluctuations are initially 
Gaussian, then they remain Gaussian in evolution independent of the choice of potential 
V(b). The treatment of a phase transition presented here has proven to be relatively 
simple. Analogous analyses using linear perturbation theoryzz**3 are actually more 
complicated because one must make a gauge choice. 

E. Multiple Scalar Fields with Linear hV(&) 

If the logarithm of the potential for multiple scalar fields is linear, hV(&) = 
XI, a&, where the ak are constants, one can derive a complete solution of the SHJE. 
For n scalar fields, the canonical transformation (2.14e,f) yields 271 constants of inte- 
gration. By considering the asymptotic behaviour of the fields after all decaying modes 
have died away, one obtains a nonlinear generalization for [ for multiple scalar fields 
that characterizes the adiabatic initial conditions for structure formation. 

For simplicity, I will consider only two scalar fields interacting through the po- 
tential, 

(3.31) 

Of course, by rotating the fields (&, &), one can obtain the general form for linear 
In V(&, $1) but the expression (3.31) clearly identifies the inllaton, 41, and the massless 
scalar field, $1. The resulting SHJE is, 

Hz = g[(g)' t (&)*] + sexP(-E$). (3.32) 
'p 

One of the reasons for considering a massless scalar field is that one may reduce 
the classical gravitational degrees of freedom to a single massless scalar field (Sec. IV). 
The analytic solution presented here may also be used to construct models with non- 
Gaussian fluctuations for structure formation.” 

1. ‘Complete Solution of the SHJE 
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A complete solution the SHJE (3.32) which depends on two constant parameters, 
b and m is: 

~(4l,h;b,m) = (= 8T~)1’r ,/xexp(-E$)cosh(u) (3.33a) 

where u is a function of 6, m, qS1 and tit which is defined implicitly through, 

di%(& - n&q - b)/mp = -s x 

[,tJ,,,~(3p - I) + tip + In Icosh(u) - sinh(u)&(3p - 1) t 3~11. (3.W 

For m = 0, this solution reduces to the single scalar field result, eq. (3.26). The 
Hamilton-Jacobi map for p = 3 is shown in Fig. 4, where the solid lines are surfaces of 
constant Hubble parameter and the broken lines are the trajectories. The trajectories 
start at the lower right hand corner and move to the top of the figure. Initially, the 
kinetic energy of the fields is much larger than the potential energy, and the fields evolve 
like two massless fields. The slope of the trajectory for large 4, is -l/m. In Fig. 4, 
m = 1 is plotted. Because the Universe is expanding, the velocities are damped, and 
the massless scalar field & reaches a constant value while & moves to larger values 
as the potential drags it downward. The surfaces of constabt Hubble parameter are 
orthogonal to the trajectories. 

The solution (3.33) may be verified by straightforward differentiation, but the 
derivation proves instructive. The first step is to remove the explicit 41 dependence in 
the SHJE by deiining a new dependent parameter, h(&, 41): 

=(h,‘t’z) = ($$)“‘erp(- F+-) h(q&,&). ‘$ 

which leads to the following equation: 

h’ = z[(g)’ t (2 - $=)‘I + 1. 

(3.34a) 

(3.34b) 

This equation is translationally invariant which suggests a complete solution of the 
form, 

h E h(v), with, v = G(+, - m& - b)/mF, (3.35a) 

where b and m are constant parameters, leading to an equation in a single variable, V: 

hz = m’(;)’ t (2 - &)’ t 1. 

Again, I have reduced the effective number of degrees of freedom by taking advantage 
of a symmetry. After solving for ah/au, 

ah 

fig2 t 1) [ 
h2 “;;;;z; :,“” - 11 

l/l 
-.= 
an 

rt (ml + 1)-l/* , 
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one can make a change of variables from h to u, 

h = d (3p)(ml t 1) 
(43p- 1) + 3p) -h(u), 

(3.36) 

leading to the integral 

4% v(u) = - - 
3p-lx (3.37) 

[uJd(3p- 1) + 3pp+ ln~c0s11(u) - sinh(u)Jd(3p- 1) + 3pj]. 

Combining (3.34a), (3.35a), (3.36) and (3.37), one obtains the iinal expression for the 
Hubble parameter, eq.(3.33). 

A surface of constant Hubble parameter, H may be plotted, if, given, &, one 
solves u through 

u = cash-’ 

and then 41 is calculated through 

41 = ($2 - b - +4/~ (3.386) 

where v E w(u) was given in (3.37). 

2. Constants of Integration for Cosmology with Linear InV(&) 

The canonical transformation is obtained found by straightforward although te- 
dious differentiation using (2.14e,f) and the results are given in Appendix A, eq.(Al). 
For future applications, it will be useful to invert, the transformation to obtain expres- 
sions for the new canonical variables b, m, r*, T”’ in t- of the old variables 41, 41, 
I&, ?&: 

*b = @a - 2 
flp k@' 

2 + +' t 2-r Voexp(- /- 
ip)]"~, (3.39a) 

& 
m=---; 

A6 

It is convenient to introduce auxiliary fields, u, v, 

(3.396) 

u = sinl-’ 

v = [2(3p- l)Vo]-‘1’ &~z(3~- 1) + 3pm-‘r-‘12.xp( 
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in which case the remaining new canonical variables are, 

b =& - n@, + 

k‘h’(3~ - 1) t 3~ t ln l--h(u) - sti(u)&‘(3p - I) t 3~11. (3.m) 

(3-3gd) 

Eqs.(3.39a-d) are the 4 integration constants that completely characterize the evolution 
of the two scalar field system with potential (3.31). 

The equations for the trajectories in scalar field space, 4, E &(+I), follow by 
eliminating the auxiliary variable u from eqs.(3.39c,d). Given 41, one first defines 
u (which now is simply interpreted,as some intermediate parameter) and then one 
determines ~$2: 

4x 
u=uo+ d-4 s 

mZ(3p- 1) t 3pm-’ (41 - h&), 

h=m4ztb+m J%J(u), 

where once again, V(U) was defined in (3.37) and ~0 = tanh-‘[m*(3p - 1) t 3p]-“‘, 
and 

hni,=$f P~[m’(3pml)t3p+ J J ln m’(3p- 1) t 3P 
%I. (3.40b) 

The late time evolution of the fields determines microwave backgmund fluctua- 
tions as well as the initial conditions for structure formation. As 7 -+ co, the decaying 
modes are no longer dynamically important. I#~ approaches &in, eq.(3.40b), and & 
evolves according to the attractor solution,8 

h(A) = 3&$- t f(b, m, r*, r”‘), 

where f is a constant along the trajectory and hence is a function of the new canonical 
variables; its form is written explicitly in Appendix A, eq.(A3). At late times, the 
metric fluctuation on a uniform 41 slice is then given by, C (see SBl), 

C(z) = A+. I~,I?) = Af(b(z),m(l),*b(l),*m(l)) 

ln I??/ + ; ln[(d t l)(m2(3p - 1) t 3p)] 

- s(l- +d~,min t b) t Jmz(3p- I) t 3pu+42a) 
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where 

m 
my3p- 1) t 3P 

%I]. (3.42b) 

t@ = tanh-’ 
1 

Jd(3p - 1) + 3p’ 

Here it is understood that b, m, rb and P are spatially dependent constants, and that 
the difference A+, is taken between z and some arbitrary but fixed fiducial point ~0, 
e.g., 

Adz l11*~[ = Alnlabj = ln [r*(z)1 - lnI?r*(zo)l. (3.43) 

Eq.(3.42) is the nonlinear generalization of C to multiple fields interacting via an ex- 
ponential potential. It is the quantity of primary interest for structure formation. For 
example, in the Cold Dark Matter Model, microwave background anisotropies at angu- 
lar scales greater than N lo are proportional to t,13 

A%mt.iTmb = f,-115. (3.44) 

Eq. (3.42) will be play a important role in developin~,non-Gaussjan models for galaxy 
formation from nonlinear long wavelength evolution. 

This example illustrates the power of the Hamilton-Jacobi formalism. Using the 
evolution equations (2.7), it would have been very difficult indeed to obtain this exact 
general solution. The biggest stumbling block is the choice of time which is readily 
resolved using the SHJE. In addition, the SHJE can be solved because one can take 
advantage of symmetries (see eq.(3.34b)) that are not apparent in the equations of 
motion. 

IV. LONG WAVELENGTH SCALAR FIELD SOLUTIONS 
INCLUDING GRAVITATIONAL~ RADIATION 

It is shown how the complicated interaction of gravitational degrees of freedom 
appearing in the separated Hamilton-Jacobi eq.(2.14b) may be reduced to that of single 
massless scalar field. This result is motivated by linear perturbation theory where one 
can reduce the gravitational radiation equations to those describing massless fields,z6 
independent of the wavelength of the fluctuations (see, for example, SahnP who has 
given elegant exact solutions). However, the results given here are proven in a nonlinear 
context for long wavelength fields. The canonical transformation linking the old and 
new gravitational variables is also derived. The momentum constraint may be simply 
expressed in terms of the new variables. Explicit complete solutions are given for the 
case of a pure cosmological constant as well as for the ease of a single scalar field 
interacting through an exponential potential. 

A. Canonical Transformation for 
Gravitational Degrees of Freedom 

In Sec. III.B, it was shown that if the Hamilton-Jacobi equation describes m 
massless scalar fields, then these degrees of freedom may essentially be reduced to a 
single massless scalar field, even if there are other interacting fields present. Similarly, 
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it is now shown that the gravitational radiation degrees of freedom may be reduced to 
a single massless scalar field. The momentum constraint may be conveniently written 
in terms of the new canonical variables and some solutions are discussed. 

1. Solving the SHJE for Gravitational Radiation 

One attempts the following solution to the separated Hamilton-Jacobi eq.(2.14b), 

R(~kr hij; ~kr ~ij) ~ a(~~, AL, z), where I’ q ~~{ In ([h](h]-‘) In ([h][~]-‘) }- 

(4.la) 
Here, [h] and [i]-l symbolize matrices with components, hij and tij, respectively, 
while Tr refers to a trace. The expression z may be loosely thought of as the distance 
in field space between the old conformal J-metric [h] and the new one [L], each having 
unit determin ant. No information is lost in this step. In the ansatz (4.la), one has 
introduced 6 constants of integration through k<j which are sufficient to describe the 
dynamics of the gravitational field. The an&z (4.1s) is analogous to the complete 
solution for m massless scalar fields, eq. (3.11a), where one introduced m constants of 
integration by utilizing the rotational symmetry of the SHJE. The separated Hamilton- 
Jacobi equation reduces to that of a single massless scalar field, z, as well as n interacting 
scalar fields, 

V(+k). 

Here, one has applied the following expression for the derivative of the Hubble parameter 
with respect to hij, 

BH aa az _ = ?!!i! BB1-‘([h]-LIn([h][~]-L))ij 
Bhij = TG ahij 32~ az 

(4.2a) 

which is derived in detail in Appendix B. After dif/ereniiation, one sets det(h) = 1, 
and one concludes that hij(aH/ahij) = 0, which simplilies the analysis enormously. 
Similarly, one may show that the derivative with respect to k;j is given by, 

BH aH a2 d BH 
-=argg 

=-2-z 
ahij 32~ Bz 

-* ([h]-l In([h][~]-‘)~[h]];hi-L)ij, (4.26) 

ad that jrij(aB/SiLij) = 0. S~IIC~ eq.(4.lb) SJW~YS admits solutions, the ansat2 (4.la) 
is justified. 

Once again, 4ij G +1/3kij may be considered as a new canonical variable. Given 
a solution, a(@&, I&, z) of eq.(4.lb) which depends on n parameters, the new variables 
are related to the old by differentiation through (2.14c,d) 

[,-qG = -T!!$fi[~H-+j f y-lPE], (4.3a) 
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[,t]‘j is traceless. Since the Hobble parameter depends symmetrically upon rij and Tij, 
one may show that their respective partial derivatives are related through a reciprocity 
relation, 

[r'(Z)]ii7jl = [rT(z)lij;rjl + ia7(o)c$. (4.4) 

2. Momentum Constraint Expressed Using New Variables 

For the special case considered in Sec. IILA, it was found that the momentum 
constraint admitted a simple expression in terms of the new canonical variables, eq.(3.3). 
One can generalize this result to include gravitational radiation. The gravitational 
momenta can be decomposed into a trace part and a traceless part (denoted by a bar): 

[r7]ij = $p f p-f]U 

in which case the momentum constraint (2.5b) becomes, 

-;+ - 2([“71%i),j t [7ryh,,i t X%bk,< = 0. (4.6) 

The generating functional (2.14a) may be rewritten in terms of the trace of the gravi- 
tational momenta, 

S = a / pr r7(6k(2)t b(z); ‘$k(z), cj(z)). 

Hence one finds that the new and old canonical variables may be expressed as partial 
derivatives of ~7, 

bTj = iz, [*flij = -$, ++. - 2 a+ ~_ 3w, ,d. _ 2 8x7 _ 
3&’ 

and the spatial derivative of ?r’ may be written as, 

= ~[r71’m7rm.i - p]~“~,m.i + +k,i - $fQi. (4.7) 

When (4.7) is substituted into the momentum constraint (4.6), one effectively performs 
a Legendre transformation between the new and old variables, 

0 = 72; = -2 ([K?]j%i) ,j + [rt]lmjlm,i + 2kJkli. (4.8) 

In deriving this result, one has also applied the reciprocity relation (4.4), [%T]j$i = 
[,*]j141i. 

It is fortuitous that the momentum constraint (4.8) admits such a simple expres- 
sion in terms of the new canonical variables. This would not in general occur if one 
chose a solution of the SHJE other than (4.la) The evolution equations for the new 
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metric variables are given by variation of the new variables in the new action written 
in (X10), 

f = 
I 

pz (& & + [sS]ii+ij - N’&) : (4.9) 

a 
zT<j - jilN,> - TjlN,i - N’jij,l = 0, (4.10a) 

j$qlij + [r+lirN; + [$qj’N$ - (N’[,=qij),i = 0. (4.10b) 

The corresponding equations for the new scalar field variables were already given in 
eq.(3.5). Since the trace of [&]‘j vanishes, the evolution of the determinant 7 is unre- 
stricted: in (4.1Oa), one should actually subtract out the trace. However, one is then 
free to choose T arbitrarily and one can just assume for simplicity that it evolution is 
determined by the trace of (4.10a). 

If the shift vanishes, then the new canonical variables are independent of time 
but they are spatially dependent, 

Tij 5 ~ij(Z), [s*]ij 3 [r+]ij(r); (4.11) 

they are restricted only by the momentum constraint (4.8). The evolution of the fields 
hij and [nT]‘j may be found by inverting (4.3) in terms of 7 and the new variables. 
Hence, if one linds the complete solution of the separated Hamilton-Jacobi equation, 
and then independently obtains a solution of the momentum constraint, then the long 
wavelength problem has been completely solved. 

Eq.(4.8) may be simplified in two important ways. Since the canonical transfor- 
mation (4.la) depends on the new metric only through iCij, one can explicitly write the 
momentum constraint in terms of irij: 

0 = tii = --2(f1/3[~~]jl~li),j + jV3[?r9p~lm,i + &h&i. (4.12) 

Here, it was important to note that [Ir)]‘j was traceless. Thus the momentum constraint 
only restricts the quantity 7 -1/3[r’f]‘j and not the full moment- degrees of freedom. 
Secondly, because the theory does not depend on the parametrization of the spatial 
coordinates, one may write the momentum constraint in terms of a covariant derivative 
with respect to &j, 

0 = 72; = -2(i’l”[*4]i),j t *$k,;. (4.13) 

This form is perhaps the most useful for general discussions. Unfortunately, the rno- 
menturn constraint does not admit an explicit general solution which was the case when 
gravitational radiation wag neglected, eq.(3.7). 

3. Solutions of the New Momentum Constraint 

In order to illustrate the meaning of the new momentum constraint, I will now 
consider a special class of solutions. 
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One set of solutions arise if the two terms appearing in (4.13) vanish separately: 

0 = (.r”“[%T~]~),j, 0 = 7&&i. (4.14) 

The first equation requires that the new momentum tensor which is traceless be diver- 
genceless as well. The solution of the second equation was given in (3.7) and is well 
understood. 

More generally, the moxuentum constraint (4.13) may be solved using the York 
prescriptions’ One formally decomposes the new gravitational momentum tensor into 
a traceless transverse part, [PTT]‘j, and a longitudinal part, [PLlij 

T1/3[r4]ij = [pTT]ij + [pL]ij. (4.15) 

Here [Prr]ij is divergenceless (with respect to hij) whereas [Pn]‘j is derived from a 
vector potential, W’: 

(4.16~) 

(4.16b) 

The momentum constraint restricts the longitudinal degrees~ of freedom, 

-2[PL]qj t 7rqi = 0, (4.17) 

whereas the traceless transverse part is arbitrary. 

B. Gravitational Hadltion Evolving under a 
Cosmological Constant 

The canonical transformation generated by (4.1) and (4.3) was written with little 
physical motivation. I will now give a derivation for the case of a cosmological constant, 
V(&) = V,, neglecting scalar fields. In this case, the evolution of the metric may be 
found by direct integration of the equations of motion. The Hubble parameter, now 
written as a function of the gravitational fields, is the solution of the B-dimensional 
separated Hamilton-Jacobi equation. 

To simplify the derivation, I will assume a vanishing shift function, N’ = 0. 
Eq.(2.7d) implies that the traceless part of the gravitational momentum is constant in 
time. One can thus write, 

1 
[~‘(t, Z)]‘j = q’j(Z) + ,*7(t, Z)Sj, (4.16) 

where q’j(z) which depends only on spatial coordinates is traceless and symmetric (the 
last point will be discusses in more detail later). Substituting into the energy constraint 
(2.5a), one finds ?r7 as a function of 7: 

r-f = -42 [Iqj” + &#12, (4.19) 
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where ]# = qijqj;. The evolution of the J-metric is given by (2.7b), 

7ij _ -= 
N 

~~7-L/a[-~T’7jj+ 2+filQ’j]. (4.20) 

One can choose any parameter as time, and since (4.19) is expressed in terms of 7, it 
is the natural choice. The lapse function may be expressed in terms of ~7, 

which implies that 
@I 32~ P”d7 NM Jq=r 

mph [l + $vs-‘7-‘]q]s]1’s’ 
(4.22) 

where [h] and [q] denote matrices with components hij = 7-‘i37ij and q’j, respectively. 
This equation may be solved by making a change of variables from 7 to r: 

*.(a ---&z) = [-& “l p 1 r-%1 (4.23) 

which leads to 

d[,+-- -1 qqlql [hl[qldz, (4.24) 

whose solution 

[h] = [i+xp{-%I=}, (4.25) 

may be verified by direct differentiation. This solution is analogous to (3.11b); it 
describes the evolution of the conformal unimodular 3-metric as a function of 7 which 
has been interpreted as time. 

One can find a solution of the corresponding separated Hamilton-Jacobi equation 
by expressing the Hubble parameter as a function of the metric variables. Assuming 
that irij is fixed, one requires the trajectory that passes through hij. More simply, one 
wishes to eliminate z E z(7) from the expression 

8rVo l/l 
==(gT- 

P) 
cosh( G =“I’ (4.26) 

which follows from (2.15), (4.19) and (4.23). To this aim, note that (4.25) may be 
solved for [q], 

M- 
IQI 

- --!&-l[iL]-Lln([h][i]-l) [il. (4.27) 

Squaring both sides, and taking the trace, one Snds 

I* = gTr{ hr([h][h]-t) ln([Ia][i]-‘) ) (4.28) 
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Thus the solution of the SHJE (2.14b) is just 

H(hijtXij) = ($$)l” cosh(F -z), with zs = gTr{ ln([h][h]-‘) ln([y[@-‘) }I. 

(4.29) 
The expression (4.29) for z motivates the general ausats of eq.(4.la); in fact, this 
solution for H is what was expected from the reduced SHJE (4.lb) with V E Vo. 

The canouical transformation (4.3) may be inverted to give the evolution of the 
metric degrees of Ereedom as functions of time 7: 

(4.31a) 

(4.316) 

(4.31c) 

[h] = [~]exp(-gq$), 

[T’I] = -($t’s71/s cosh(@$z) [h]-’ fy-‘/341/3[R4][~][h]-1 

di5 --z = *~-I -1/l-1/3 
mP 

7 Wll). 
where 

Here [?r7] and [rf] denote matrices whose compoueuts are [u71ij and (e41ij, respectively, 
and ][r’]] = (Gj~l,[,4]j’[,S]mi)1/l. 

In classical Hamilton-Jacobi theory,‘s one may invert the canonical transforma- 
tion to describe the evolution of all degrees of freedom. In the long wavelength gravita- 
tional system, however the trace &[*‘I” vanishes, and one has consequently lost one 
degree of freedom. For this reason, the determinant of the 3-metric 7 has been adopted 
as time, and one then solves for the conformal S-metric hij, eq.(4.31). (To relate the 
transformation (4.31) with the integration of the equations of motion, one can identify 
the field [q] introduced in (4.5) to the new gravitational momenta through, 

[q]$ is clearly a symmetric matrix, when its indices are raised and lowered by kj.) 

The evolution of the metric is shown in Fig. 5. Every j-metric may be represented 
graphically by an ellipsoid with variables, y’, i = 1,2,3, satisfying, 

1 = hi&$. (4.32) 

Since d&(h) = 1, the volume of the ellipsoid is just A = 3.14.. Eq. (4.31a) may written 
in a form that is more amenable for calculation, 

[h] = [X]‘/sexp 
( 

- ~.~i;lLi;~~~~~~l~‘~)[~]L/l, 

which may be justified using a Taylor series expansion. Since the argument of the 
exponential is a symmetric, it may be diagonahsed, 

[‘]1’;[:;jlj;lL’2 = [R]T[D][R] 
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where [R] is an orthogonal matrix and [D] is diagonal. One can thus eliminate [r*] 
from (4.33) to obtain an expression 

[h] = [k]‘l’[RITexp (-ez[D]) [R][i;]“’ 

which is useful for numerical methods, because the argument of the exponential is 
a diagonal matrix. For example, the solution of the ellipsoid equation (4.32) which 
depends on the parameters 0 and $ is, 

f= [@‘12 [R]‘erp(-g ) ZD [sidcosJI, sidsin~, co~O]~, 

where 0 5 8 5 % and 0 5 $ 5 2~. (4.36) 

If [A] is diagonal, then (4.36) stetches or contracts the ith component of a unit vector by 

=q(-srD;;), rotates the resulting vector and then Snally stretches or contracts 

the final components. 

In Fig. 5, a two dimensional example is given where an ellipse which was initially 
at an angle 45O to the y’ axis evolves to its final position given by the broken curve. 
Because the evolution of hij is basically that of a decaying mode, it is quite simple. 
The ellipsoid stetches and rotates for less than 90° to its final form. The curves shown 
are equally spaced in z with the flual position corresponding to z = 0. 

C. Gravitational Radiation Interacting with a Scalar Field 
with an Exponential Potential 

The variable I defined in eq.(4.la) behaves as a massless scalar in the SHJE (4.Ib) 
even when the potential V(&) is nontrivial. This analogy made may be made even 
stronger by noting that I evolves in time according, 

(i - Niz+)/N = -2%. 

Here, I have applied eqs. (4.10a), (4.3a), (4.2a) and (2.7b). Eq.(4.37) is just the 
evolution equation for a massless scalar field interacting with n additional scalar fields 
without any gravitational radiation (see eq.(2.9a)). 

Hence, in general, it there are n scalar fields interacting through a potential 
V(&), one can describe the evolution of the complete gravitational system by solving 
the SHJE for u + 1 scalar fields, (4.lb). If one determines that the scalar fields evolve 
in time, cc, according to, 

2 = z(a), ‘$k = ‘$k(a), 

then the evolution of the gravitational degrees of freedom is given by a formula analogous 
to (4.31), 

[h] = [i]exp(-@$z$$), (4.38a) 
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[?rT] = -(+9/171/s cosh(ez) [A]-’ + 7-‘/3j1/3[?r4][~][h]-‘, (4.386) 

which is valid even the potential is not a constant, provided one interprets z as a massless 
field that interacts with the n scalar fields. (For simplicity, N’ = 0.) Of course, the new 
canonical coordinates [L] and [xf] must satisfy the momentum constraint (4.13). For 
example, one may apply the solution of Sec. LH.E for 2 scalar fields, one massless,&, 
and the other, 4, interacting through an exponential potential if one identifies $1 with 
z. Eqs.(3.38a-d) may be then inverted to give the general evolution of the 2 scalar field 
system. I will omit the details. 

However, the analogy cannot be taken too far because one cannot rewrite the 
momentum constraint simply ln terms of the massless degree of freedom I. In this 
sense, the gravitational radiation degrees of freedom differ from massless fields in that 
their polarization aflhcts the direction of momentum transport. 

V. SUMMARY AND CONCLUSIONS 

In an important generalization of homogeneous mini-superspace models, it has 
been shown that the evolution of the long wavelength metric and scalar fields is tractableg 
including the evolution of gravitational radiation. One invokes a transformation to new 
canonical variables where the Hamiltonian density vanishes strongly. Since the evolu- 
tion of fields is generated through Poisson brackets, the new~.variables are constants in 
time if the shift function vanishes although they may be spatially dependent. 

The separated Hamilton-Jacobi equation (2.14b), the canonical transformation 
(2.14a-f) and the new momentum constraint (4.8) are the most important equations 
in this paper. The SHJE does not depend on the time parameter nor on the spatial 
coordinates: it yields a covariant fornndation of the long wavelength problem. In the 
SHJE, the gravitational degrees of freedom may be reduced to that of a single massless 
scalar field. As a result, one can obtain complete solutions for gravitational radiation 
with n scalar fields for two important cases: (1) when a cosmological constant is present, 
and (2) when the scalar fields interact through an exponential potential. However, 
the gravitational field is fundamentally different from massless scalar fields in that it 
carries spin angular momentum. For example, the momentum constraint restricts the 
longitudinal modes of the gravitational momentum tensor. Fortunately, the momentum 
constraint admits a simple expression ln terms of the canonical variables. 

For many applications, the gravitational radiation modes are not dynamically 
important, and one may neglect them as in Sec. HI. In this case, one can obtain a 
general solution of the momentum constraint, eq.(3.7). For m massless scalar fields, 
it is easy to produce a complete solution of the SHJE which depends on m arbitrary 
parameters because the field space is rotationally symmetric. More generally, from a 
complete solution one may obtain alI solutions of the SHJE by the extrema method of 
Sec. HLC where the arbitrary integration parameters & are chosen to be functions of 
the scalar fields. Exact solutions of the SHJE for single scalar field are given when the 
potential is formed by joining two exponential functions together (Sec. 1II.D). In this 
way, one may model the transition from the inflation epoch to a radiation-dominated 
era. The complete solution of two scalar fields interacting through and exponential 
potential given in Sec. IKE constitutes a major advance for practical calculations of 
long wavelength universes. The new canonical variables which are in fact constants of 
integration were explicitly given. From the late time evolution, one may then determine 
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the nonlinear generalization of C which is a measure of adiabatic primordial fluctuations. 
These results may be applied to models that produce non-Gaussian fluctuations for 
structure formation.2’ 

There are several extensions of this paper which could prove interesting. Since 
Hamilton-Jacobi theory has proved fruitful in solving the long wavelength problem, one 
wonders whether it can also be profitably applied to other gravitational systems where 
short wavelengths are not neglected. For example, the greatest uncertainty in inflation 
models lies in the treatment of short wavelength fluctuations. Any improvements here 
would necessarily have an important impact on the primordial fluctuations to form 
galaxies. Another possibility is that the Hamilton-Jacobi formalism may provide clues 
to the quantum theory of the gravitational field, although currently the long wavelength 
problem does not admit a totally satisfactory quantum formulation.s Nonetheless, mod- 
els of long wavelength universes are a significant improvement over those of homoge- 
neous mini-superspace, particularly when one incorporates the stochastic generation of 
initial conditions.‘J*28 
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APPENDIX A. CANONICAL TRANSFORMATION FOR 
TWO SCALAR FIELDS WITH V(&,.&) = Voeoexp(-fi&) 

A complete solution (3.33) of the SHJE for two scalar fields interacting through 
an exponential potential was given in Sec. IILE. In this appendix, I will derive the 
expression, eq.(3.39+d), for the new canonical variables b, m, #, r”’ as a function of 
the old variables, 41, $2, ~9% and &. In addition, the expression (3.42) for C will be 
justified. 

The canonical transformation is given by differentiation of the Kubble parameter 
(3.33) through eq.(Z.l4e,f), 

r”=--@ 
coshu - sinhu m’(3p - 1) + 3p 

[43p- 1) + 3pyz(d -I- 1)‘P 
rl’k(- (Ala) 

& = -m*b, @lb) 
*+a = ?+‘t~~ + ,$-, 

& (-41~) 

Km = 7r”{& - /- 
p”$ n 
-( 4a m’(3p-l)f3p 

+ J ml(3pm-l) + 3p)}3 (A*4 

where u was defined implicitly in (3.33b), 

$“rmq5rb)=-(3~ljx 

[u,/mz(3p - I) + 3p + In Icosh(u) - sinb(u)dm*(3p - 1) + 3~11. (A2) 
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After some algebra, one can invert eqs.(Ala-d) and express the new variables in 
terms of the old ones, eqs.(3.39a-d). (3.39a) follows from (Ale) and the definition of 
the Hubble parameter whereas (3.39b) arises directly tram (Alb). The expression for 
EL, v are derived by solving (Alb,a) for u. 

It is desirable to determine the late time evolution of the fields in order to deter- 
mine microwave background fluctuations as welI as the initial conditions for structure 
formation. Eq.(AZ) may be rewritten as 

lcoshu - sinhuJmr(3p - 1) t 3pl = 

exp[ - (1 - $)e(S, - m& - b) - uJd(3p - 1) t 3p] 

and then substituted into (Ala). In the limit that 7 ---) 00, the fist scalar field 41 
approaches a constant given by (3.40b) and one finds that 7 evolves in & according to 

W&l = 3&e t f(b, m, rb, 4, 

where 

f(b,m,rb,rm) =ln/r’I + ;ln[(m’+ l)(m*(3p- 1)f 3p)] C-436) 

- e(l - +n&,,i. t b) t &nz(3p- 1) t 3~~9 - In a. 

At late times, the metric fluctuation on a uniform I$~ slice is then given by <, 

C(z) = A+, In(&) = A InIzbl t ; In[(m’ t l)(m’(3p - 1) t 3p)] 

- $$?I - &vhmin t b) t +(3p- 1) t 3puo](A4a) 

where 

and 
u+ = tad-’ 

1 

Jm~(3p - 1) t 3p’ 
(-44~) 

It is understood that b, m, ?rb and +” are spatially dependent constants, and that the 
difference Ah is taken between two spatial points I and some fiducial point 10, e.g., 

A,, ln 1~~1 = A InI8 = In Irb(z)I - In Irb(z,,)l. 

Eq.(A4) is the nonlinear generalization of t to multiple fields interacting via an expo- 
nential potential. 
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APPENDIX B. MATHEMATICAL NOTES 

In this appendix, I will derive the algebraic results (4.2a,b) which were necessary 
for the analysis of gravitational radiation in Sec. IV. 

In eq.(4.la), the quantity 

tZ = gn{ ln[A] ln[A]}, where [A] = [h][ir]-‘. 

wa defined. (From now throughout this appendix, braces will be deleted; e.g. A will 
denote a matrix.) One requires the derivative of z with respect to hij and &j. By 
considering difkentials of both sides, one finds, 

dZ = $z-‘!h{ InAdlnA}. 

The primary complication here is that A and dA need not commute, and one cannot 
write immediately the desired result, 

dz = +Tr{ hA A-‘dA}. (83) 

Instead, one should expand the In A in a power series, 

=dA - ; (dA(A - I) f (A - I)dA) 

+ ;(dA(A -1)’ f (A - I)dA(A -I) t (A - I)‘dA) t . . . . (84) 

where I is the identity matrix. Since Tr CD= Tr DC and since I and A commute, one 
may rewrite (B2) as 

dz=+Tr{ InA I-(A-I)+(A-1)2+... 
> 

dA) 

which leads to the desired result (B3). Finally, letting A = hi-‘, one finds 

dr = gzmlTr{ fi-‘(hR-‘)ln(fi~-‘)(~h-‘)dh} = Tr{h-‘ln(hk’)dh}, 

which yields the required relation (4.2~~); in the last step, one applied the identity 
C-’ ln(D)C = lu(C-‘DC). Eq. (4.2b) is proved similarly. 

Using eq.(4.2a), one can readily show that h;j(5H/ahij) = 0: 

8H 
hijG = ggt-‘Tr{lnA} 

cs In [~XP(T~{III A})] = In [det exp(ln A)] = 0, 
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since det A = &t h = det i = 1 after differentiation. 
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FIGURE CAPTIONS 
Fig. 1. A complete solution, H E iY(&, &; &,&) (eq.(3.12a)), of the separated 
Hamilton-Jacobi equation (SHJE) is shown for two scalar fields evolving under the in- 
fluence of a cosmological constant. The surfaces of constant Hubble parameter (solid 
curves) are circles concentric with the origin. The broken lines, which are orthogo- 
nal to the uniform Hubble surfaces are the trajectories of the scalar fields which alI 
end at the origin. Because the SHJE is invariant under translations in field space, 
(&,&) + (& + &,& + &), the origin, (I&,&), in this figure is arbitrary, and hence 
the solution depends on twofiee parameters which are then interpreted as new canonical 
variables. Differentiation of the Hubble function, H(&, 41; &, &), with respect to the 
new canonical variables yields the new conjugate momenta, eq.(3.13). The momentum 
constraint may be simply expressed in terms of these new variables. This trivial ex- 
ample illustrates the basic principles behind more general solutions of the SHJE which 
include the effects of gravitational radiation. 
Fig. 2. Given the complete solution of the SHJE shown in Fig. 1, one may generate 

all other solutions using the extrema method of Sec. IU.C where the parameters $ are . 
chosen to be a function of 4. Here, it is shown graphically how to produce the Green’s 
function solution where all trajectories emanate from a single point $ where the Hubble 

parameter has value H,. The parameters z are restricted to lie on a circle of radius 

7 = I$ - $1 = acosh-‘(&/Ho) (eq.(3.22)). Holding the observation point &fixed, 

one determines the constrained parameters ; which extremizes H(& z) E R( I$ - ;I) 

(eq. (3.12a)) which is function only of the distance between 4 and 4. Hence, $ must 
be collinear with 4 and d;, and the points which give the minimum and the maximum 

values are shown. The parameters are thus functions of the scalar fields, s E G(J),; 
substitution into (3.11a) leads to the Green’s function solution, eq(3.23). 
Fig. 3. The exact Hubble function (solid curve) is shown for single scalar field 
with a potential that is defined by continuously joining two exponential functions 
at 4 = 0, eq.(3.28). The broken curve is the slow rollover approximation, HER = 
[8~V(~)/(371z~)]‘~~, which is effectively a plot of the potential. This system imitates 
the transition from an inflation epoch to a radiation-dominated era. For $ < 0, the 
Universe inflates with the scale factor evolving as a(t) 0: ta, whereas for # >> 0, 
a(t) LX @is. The exact Hubble function and its derivative BE/B+ are continuous at 
4 = 0. The variable C, eq.(3.8), which is a messwe of the metric fluctuations, is a strict 
constant for all times that the wavelength of the fluctuation exceeds the Hubble radius. 
Fig. 4. A complete solution, H 3 H(&, $1; b, m) (eq.(3.33)), of the SHJE is shown for 
two scalar fields; 41 is massless whereas 42 interacts through an exponential potential, 
V(#) = V, exp(-&?$.&/m.p), p = 3. Once again, the solid curves are surfaces 
of uniform Hubble parameter; the set of orthogonal broken curves are the trajectories 
which move up the page. This complete solution depends on two arbitrary parameter, b 
and m. b reflects the translational invariance of the SHJE, eq.(3.32), in the & direction, 
41 + +I+&. A typical trajectory begins at large 41 with slope given by -l/m (m = 1 is 
shown), where the fields behave effectively as two massless scalars because their kinetic 
energies dominate over the potential. As the Universe expands, the decaying modes 
no longer become important; I$~ approaches a constant and r$* evolves according to 
the attractor solution for a single scalar field, 42 = ln(y)m~/(6&?$ + cast. One 
can then write down an explicit expression for (, eq.(3.42), which characterizes the 
adiabatic fluctuations for structure formation. In addition, this example may be used 
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to solve completely the evolution of gravitational radiation with a scalar field $1 that 
interacts with an exponential potential (see Sec. IV.C). 
Fig. 5. The evolution of the long wavelength 3-metric at a fixed spatial point is 
shown for a system with a cosmological constant (see eq.(4.36)). The conformal metric 
of unit determinant, hij E ~-l/~yij, may be represented graphically as an ellipsoid 
with coordinates (y’, y*, y3) satisfying, 1 = hijy’yj. For plotting purposes, the third 
coordinate will be suppressed. Fromits initial starting position, the principle axes of the 
ellipsoid rotates by less than 90” to its final position. At the same time, the eigenvalues 
of the ellipsoid which measure the lengths of the principle axes are stretched. Even 
when there are scalar fields that interact with a potential, the evolution is qualitatively 
the same because gravitational radiation degrees of freedom my be reduced to that of 
a single scalar field (see eq.(4.1)). 
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